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Abstract. We develop a method for cazleulating the Cartan forms in the parametrization
of group transformations which has a simple composition law and satisfies the condition
called the naturalness. The method is applied to gauge theories for finding the explicit
transformation laws of gauge fields under finite local transformations of groups, and to
chiral field theories for setting up chiral field Lagrangians. The explicit forms of finite
transformations of gauge fields and their nonlinear realizations for gravity and superpravity
are found. The expressions of the Cartan forms, the Lagrangians of the principal chiral
fields and the Goldstone fields for the unitary groups U(2), SU(2), U(3), SU(3) and the
coset spaces associated with these groups are derived. The Lagrangians obtained are
distinguished from the previcus known ones by new types of nonlinearity.

1. Introduction

It is well known that the effectivity of the group-thecretical methods essentially depends
on the choice of parametrization. The vector parametrization, proposed at first for the
rotation group O(3) and the Lorentz group [ 1, 2], and generalized afterwards for some
other groups [3-5), has been convenient and effective in the investigation of many
problems of these groups. The important features of this parametrization which are
not present in many other parametrizations are the following: (i) The composition law
of parameters which correspond to group multiplication has a simple form; (ii) The
parametrization satisfies the condition, called naturalness; that is if G(Q) is a group
element, Q is the set of parameters, regarded as a vector in some space, then

G(Q=0)=1I G(-Q)=G"(Q) (1)

(I is the unit element of the group); (iii) The parametrization has also linearity; that
is an inner automorphism corresponds to a linear transformation of parameters:

G(QIG(Q)G™H(Q) = GIA(Q)Q] - (@

(A is a matrix). Because of these properties many results can be obtained directly by
using only operations on parameters and without addressing matrix forms of transfor-
mations of groups or their representations.

In the following we develop a method for calculating the Cartan forms in the vector
parametrization of groups (section 2). It turns out that the calculation can be based
only on the composition law of parameters and the naturalness of the parametrization,
unlike in the usual approach based on solving the Cartan-Mauer’s equations [6, 7).
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The method is applicable to many different groups and has many interesting applica-
tions. The applications are discussed in two directions: (i) finding the explicit transfor-
mation laws of gauge fields for gravity and supergravity under the finite local group
transformations, the explicit form of the nonlinear realization of gauge fields (section
3); (ii} setting up the principal chiral and Goldstone field Lagrangians related to the
unitary groups U(2), SU(2), U(3), SU(3) and the coset spaces associated with these
groups (section 4). In the conclusion (section 5) we discuss the results obtained.

2. Method fer calculating the Cartan forms

Let the Lie group G be parametrized by the set of parameters Q= @,. Suppose that
{a) A composition law of .parameters Q'={(Q, Q') which is defined by the group
multiplication G{Q") = G{(Q)G(Q") is given, and Q" continuously depends on Q, Q’;
(b) the parametrization satisfies the naturalness (in the sense of formula (1)). From
the viewpoint of geometry of group space of parameters an infinitely small vector dQ
which has origin at the point Q corresponds to the group element G(Q"): G(Q")G(Q)}=
G(Q+dQ), or G(Q) = G(Q+dQ)G Q). Decomposing G(Q+dQ) to series in dQ:

3G 1 G
G(Q+dQ)=G(Q)+E QdQ”’+5&Q,,an o

= G(Q)+dG(Q)+0(dQ?)

dQ,, dQ,+...

we obtain
G(Q)=G(Q+dQIGHQ) =T +(dG(Q))GT(Q)}+O(dQ?). (3)
In the other side, from the naturalness (1) we can represent G(Q’) in the form
G(Q)=G(Q+dQ)G™H{Q)=G(Q+dQ)G(-Q) 7 4)

and therefore

Q'={(Q+dQ, Q). (5)

In equation (5) Q' continuously depends on dQ (by the prepaosition (a)) and when
dQ@ =0 we have Q' ={Q, —Q)=0 (by the naturalness, preposition (b)), therefore the
parameters Qf, are infinitely small and can be represented in the form

Q. =(Q+dQ, ~Q), = 2,.(Q) dQ, +0(dQ%) = Q"+ 0(dQ?) (6)

where the coefficients e, (Q) depend on the concrete form of the composition formula,
QY = ,,,(Q) dQ, is the first order (in dQ) terms in the expression of Q/, (6).

Remember that the tangent space to the Lie group G in the unit element of the
group is identified with the Lie aigebra of this group, G(Q’) have the form

G(Q) =I+iQVX,+0(dQ%) (7
where X, are the generators of the group G. Comparing (3) and (7) we obtain
(dG(Q))G(Q)=iQ"X,. (8)

From (8) it is clear that the Cartan forms in this approach is just the first-order (in
dQ) terms (Q,") in the expression of the composition {Q+dQ, —Q).
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3. The finite transformation laws of gauge fields and their nonlinear realizations for
gravity and supergravity

The explicit transformation laws of gauge fields under the local group transformations
are written usuvally in infinitesimal form. It is not always easy to find explicit finite
forms of these transformation laws. In [3, 8] such transformations have been found
for the gauge group SU(2) and the Lorentz group. In these works the calculations
were based on the mairix expression of group elements or representations. However,
for the more complicated cases such as Poincaré groups and supergroups, it is practically
not possible to go on this way. The method developed in section 2 helps us resolve
the problem. In the following we show that by this method it is possible to obtain not
only the explicit finite transformation laws of gauge fields for the Poincaré group and
supergroup, but the explicit form of their nonlinear realizations as well.

3.1. The finite transformation laws of gauge fields of the Poincaré group

Let us consider the gauge theory of gravity in which the gauge group is the Poincaré
group [9]. It is known that in terms of the geometry of a principal fibre bundie the
gauge fields are connection coefficients on a cross-section of a bundle with spacetime
as its base and the symmetry group as its fibre. A finite local transformation § of the
gauge group {(that is a finite group transformation whose parameters depend on the
points of base spacetime) are described as a change of section. Under this transforma-
tion the connection $} (the Lie-algebra valued one-form on spacetime) is transformed
as the following [10}:

Q'=808"1+5ds™. (9)

In the following we show that it is possible to find the explicit form of transformation
laws of the coefficients (7 of connection one-form O (@ =Q41, dx*, I, (A=1,...,10)
are generators of the Poincaré group, x, are coordinates of base spacetime) under the
gauge transformation (9). We use the parametrization proposed in [4]. According to
[4] the transformations of the Poincaré group can be represented in the 5x 5-matrix
form:

L? L(p)b/|1+p? '

s=(F® Heo/nr) 10)
0 1

where p={p., p¥} (a=1,2,3) is a complex three-dimensional vector parameter; b=

{b,.} (m=1,2,3, 4) is a real four-dimensional vector parameter, L(p) is the 4 x 4 matrix

of an arbitrary Lorentz transformation [2]:

_(1+p(1+p5) _{p" =xp
HO = =& 7)

p~ is the antisymmetrical 3 %3 matrix, dual with the vector p, (p™)as = £cncp,. The
composition law of parameters has the following form:

(11)

Q"'=(Q, Q) Q={p, p*, b} Q'={p,p"* b'} Q'={p", p"*, b"}
. (1=p*)p+ 1 —p*)p'+2[pp] v g
P= 1+p°p”—2pp’ 27 =(r) (12)

|1+p'2|L(~p”)L(p)b+ll +p%|L(p") L(—p’ )
[1+p*p™ ~2pp'|

b=
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It is easy to show that the parametrization (10) is natural and linear in the sense of
the formulae (1) and (2). It should be noticed that the usual parametrizations of the
Poincaré group do not have these properties. The matrix A(Q) in the formula (2) is

the following
0% p) 0 0
AQ)= 0 O*(p*) 0- (13)
a.(p, p*,b) a_(p,p%b) L(p)
where O(p) is the complex 3 x 3 matrix which acts in the space of complex parameters
p and takes the form
PP

O =
- 00=1 (13a)

O(p)=1+2
a.(p, p*, b) are the rectangular 4 X3 matrices whose elements are

[@alp, P, Bla =1z [L(p) 57 L{-p)b] (13b)

|1+ J1+p7

I™ are the 4x 4 matrices of generators of Lorentz group whose elements are
L2157 mn =3 (BmaBan = BanBma) ~ 38t Bon = BpnBimc) ]
{(a,b,c=1,2,3; mn=1,2,34).

(14)

In the five-dimensional representation (10) of the elements of the Poincaré group, ten
group generators Iy ={J%*, T,.} are the following 5x 5 matrices:

Jf=(21{?) g) (Tl aen = Ornsdns (M,N=1,2,...,5). (15)
The connection one-form ) can be written as

Q=00 =0 41, dx*=(w,J} +w* 7+ 07 T,) dx* (16)
and under the transformation (9) ), transform as

Qlada=0s5(Q)1S(~Q) + 5(Q) dST(Q). (17}

Based on the linearity (2) it is easy to find that

S(Q)IBS(-Q)=AAB(Q)IA

which defines the first term of (17) (A{Q) is the matrix (13))}. The second term is the
Cartan forms which can be calculated from the composition law (12) by the method
presented in section 2. After some manipulations we obtain for the transformations of
the connection coefficients (gauge fields) under the group transformations with arbitrary
finite local parameters Q(x)={p(x), p*(x), b(x)}:

@ha=[0%(PY]as@us+ Fas (P)3,.Ps
w% =[O (p*)] i+ Fip(p)o. P}

8" =La.(p, p*, )7 0uata—(p, p*, b)17wia+ LY ()™, 18)

+[B+(p, P, B)I53mupa +[ B0, p*, D129, 0% - 27 [L(p)]™"8.b"

11+
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where the matrices C(p), ee.{p, p*, b} are given by (13a), (13b)

(1= p°)8up+2paps — 22, Pe
b(1+p2)b : ' (18a)

The matrix B.(p, p*, b) are the rectangular 4 X3 matrices whose elements are

Fab(p)""

[B+(p. p*, B)lpa = : {[ (4Fba(p)+ﬁa(p})f‘“] L(p)b}

11+p7
A
[ﬁ—(PsP*, b)]ma=[1:P2] {l:l'f =2 (4F (p)_'_fba(p)-[(_])] L(P)b}m (18b)
Sab+5abcpc

fao(p) =225

From the transformation formulae (18) it is difficult to determine the tensor nature
{with respect to the local frame) of the gauge field components. However, these field
components can be replaced by their appropriate functionals which have clear tensor
nature and are considered as independent field variables. Usually this is implemented
by considering nonlinear realizations and introducing nonlinear gauge fields [9, 11, 12].

3.2. The nonlinear realization for the Poincaré group

Let us consider in the parametrization nonlinear realization for the Poincaré group
which is linear in the Lorentz group. One can rcpresent the transformations of the
Poincaré group (10) in the form:

g (1 L(p)b/|1 +p2|)(L2((Jp) 0
0 1

where we denote with L the Lorentz subgroup and with F the coset space P/ L. Then
one can introduce the field ®(x) which takes values in the coset space at a fixed
point x:

) SeESy. (19)

2

and define the nonlinear gauge field f:
H=0'00+d 7 db. (21)

Taking into account the explicit form (15) of generators of the Poincaré group, for
the 5x 5 matrices {2, () can write

20 8 A (28 8 '
Q= (= . 22
(oo a7 @)
where w, @ are one-forms which take the values in the Lie algebra of the Lorentz
subgroup: @ = (w, IS+ w%,I a) dx*, & = (D, 157+ &%, 1) dx*; 6, 6 are R'*-valued

one-forms: 8= 6, I, dx*, 6= 671, dx*. The formulae (20) and (21) allow us to
define B 8 from w, 6 (by using the naturalness, linearity and the method proposed in
section 2) -

539
I
g

A L(p)¢ _ ’ \
0—9+D(|1+P2|) D=d+a. (23)
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Under the change of the cross-section & is transformed as the linear gauge field
of the Lorentz group:

é'= L} (p)o(L*(p)~'+ L*(p) d(L?(p))™" (24)

and  as a Lorentz tensor: & = L*( p)é. Therefore & and 8 can be interpreted, respec-
tively, as the local Lorentz connection and tetrads (e = k0., [ko] = cm). From the
nonlinear gauge field & the culvature 2-form, the action and equations of motion of
gravity may be constructed by the known procedures [9, 12].

3.3. The finite transformation laws of gauge fields of the Poincaré supergroup

Now let us go over to the case of supergravity formulated as a gauge theory of the
Poincaré supergroup [12-14]. The natural and linear parametrization of the Poincaré
supergroup has been proposed in [5]. In [5] the elements of supergroup S(Q) are
parametrized by the set Q of parameters: Q =(p, p*, B, A, A*), where p is a complex
three-dimensional vector parameter, B is a Hermitic2 X 2 matrix, A is a two-dimensional
complex vector with anticommuting components. The compositional law of parameters
is the following:

Q"=(Q, "}

" W (1=pPp+(1-pHp'+2 pp’]
p"={p,p)= C) ;
1+p°p~—2pp

B'= (1 +p2pr2 _zppr)-—l{ll +p’2[1”_llBl+1”+_1 -+ |1 +P2| irfIr-lBrlr—1+lu+

p*ﬂ = (prr)*

— i Il +P2=§= /1 +pf2 Irf—'la . Af!f—!-ﬁ-lrﬁ' (25)
+iv1 +p'*2 V1 _|_P2 A A‘I+Iu—l+}

A= -+ "2 I”_l ZA 1 i"I’-lA‘ A*ﬂ' — Yy
=vV1l+p = = =(A")
i+p 1+p

where

IE SL(2= C) Z= I(p) =\/i‘ﬁ ﬁ=iPa0'a=
P

o, are Pauli matrices
_ Al) (A,A;‘" AlAf')
A-A'= S(A¥ AT = )
(Az (AT, 43) AAF AA¥

The linear transformation which corresponds to the imner automorphism S(Q"}=

S(Q)S(Q)S™ Q) is _
P +(pY
1+p*
B'=PBI—|1+p "2 (B+iA- A+ 21 B—iA- A)I " p'I*?]
—2i(1+p?) VA AT - 2i(1+ p*2) PP A ALY
A'=PA =21+ pY) V2P A

p'=0%p)p’ O(p)=1+2 (Pab = EapcPe O00=T

(26)
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The connection one-form which takes values in the superalgebra has the following
decomposition: : :
Q=wJ;+oil;+8,T"+T Qs —ViQt~

= pad ot Ofuada ¥ Oum T +¥,,Q% — V5, QF) dx*
Qe =245Q;5- , (27)

Using the composition law (253), the linear transformation (26) and using
similar methods as for the Poincaré group, we obtain for the transformations of

the gauge fields under the supergroup transformations with arbitrary finite local
parameters Q(x)={p(x), p*(x), B(x), A(x), A*(x)}:

Do = Oib(P)w,.‘.b + Fou(p)a.pe wie=(w,.)*
0, =P6,I"—|1+p* '[2Pd, I (B+iA- A)I* +21(B-iA- A)[ 6,1
i1+ p) IA TR 21+ p) AP - AT
+|1+p3(1+p%) [ s + Ba) (B -+iA- A) 3, p, (28)
+I(B-iA- A)*(ak+B1)a,p* '
+13, BI* +ilA- (5, A) " ~il(3,A) - Al']

Vi, =PP,—(1+p) "V 2P8, 1 A~ (aa+ Ba) A3, p. +19,A] WA = (T )*
where
0u=Oumo™  Ou=Ouno”  u=iwuo,  BL=-iw)os
- Fop(p)==(1+p) 2 [(1+p")8as +2paPs + (P™) s ]
a,=(1+p*) 'p.—io, Ba=(1+p*) 'p,—2iF..0,

3.4. The nonlinear realization for the Poincaré supergroup

The nonlinear realization for the Poincaré supergroup which is linear on the Lorentz
group is performed by the same scheme as for the Poincaré group.
A supergtoup transformation can be represented in the form

5(p, p*, B, A, A%)
I(p)BI"(p) _Kp) I*(p)A*)
=8 (0: O, T a8 s S(P, P*: O: Oa 0)
[1+p3 Vit+pt V1i+p*

=8pS, (29)
where 8 is an element of the Lorentz subgroup, Sg is 2n element of the coset space
G/L gwe denote with L the Lorentz subgroup). One can define the nonlinear gauge
field ) - ‘

Q=000 +d ' dd (30)

where the field ®(x) takes the values in the coset space in a fixed point x and has the
form:

H{p)BI'(p) U p)n(x) l(p*)n*(x))
[1+p% ~ Vi+p®  Ji+p¥

ﬂl(x))

72(x)

o(x)=5 (o, 0,
(31}
(x)=g"(x)  £M(DeRY pix) =(
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mi(x), n(x) are anticommuting components. From (30), (31) and the properties of
the parametrization one can obtain for the explicit form of the nonlinear gauge fields:

-~ — A* — *
Wyg = Wyq Wya= Wya

. K(p)e()L* (p) _.[ - () ]
*’“”eﬂ“’z’“( 147 ) A(ﬁ:‘;) )

+in(x)- [(_5%) A:*] (32)
49 (l(p)n(X)) T 420 (l(p)n(x))
Vi+p? Vi+p?
where
D=8, +é,+&,"
AL =a,+2d, A =an+2a°"
&, =iw,,0, &p=—iwk,0, 8,=8,,0" B, =8, m™
Under the change of section the connection one-form i is transformed as
Bpa= Orzzb(p)é#b'!'Fabappb @k = (&)
6, =P(p)6.1*(p) (33)
bl =Py, ?=(¢r;).

The components &,,, @a, Oum, 1I' . of the nonlinear gauge field ) with the transfor-
mation law (33) are interpreted as, respectively, local Lorentz connection, tetrads and
Rarita-Schwinger field. In terms of these fields one can construct the culvatures, the
action and the equations of motion of supergravity [12-14].

4, Lagrangians of the principal chiral and Geldstone fields associated with the
unitary groups

Nonlinear chiral field models have been the subject of intense study in theoretical
physics [10, 15,16). In these models the interaction is defined not by adding an
interaction term to the free field Lagrangian, but by the geometrical structure of the
nonlinear manifold in which the field takes values, For such chiral fields as the principal
chiral fields, the n-fields, the Goldstone fields, the Skyrme fields, etc., the manifold M
of field values is either a Lie group G or a coset space G/H (H is the subgroup of
G). It is possible to set up the Lagrangians of the nonlinear chiral fields by considering
the geometry of the group space which is analogous to the geometry of the Riemannian
spaces and the spaces of affine connections. The fields are identified with the local
parameters of group spaces or coset spaces, the Lagrangians are expressed through
the Cartan forms for the corresponding Lie group space [6, 71.
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4.1. The vector parametrization of the unitary groups U(2}, SU(2), U(3), SU(3)

For deriving the Cartan forms associated with unitary groups by the method presented
in section 2, one cannot use the exponential parametrization If =exp(i£:X)) (X, are
generators), because the composition law of arbitrary finite parameters has not the
simple form. An adequate one is the parametrization by the Caley form [17, 18]

1+N
U=U(N)=—— Ue U(n) (34)
1-N
where N is a antihermitic #n X n-matrix N* = —N. The composition law of parameter
matrices N is:

U(L)=U(M)U(N}, L=(M, N}

=1-(1—-N)(1+MN) (1~ M). (35)
In particular, one has [18]:
(M+8N, My=(1-M)"'8N(1+ M)} (36)

where 8N is a small addition to the matrix M. It is easy to verify that the parametrization
has naturalness (1) and linearity (2).

Let us consider the unitary groups U(2) and U(3). Then instead of the matrix N
one can choose as parameters of these groups the components of matrices M in o-basis
{(for U(2)) or A-basis (for U(3)), that is for U(2):

1-inG;
1+inoy

U=U(n)= (37)

where 7; = (1o, 1) are four real parameters which make up a vectorin R*; oo=1I, 073
are Pauli matrices, and for U(3):

1-inA,
U=Uln)=7"" 38
(n) .y (38)
where 5= (70, M,..., Ns) aré nine parameters which make up a vector in R%; A,=

2L, Ay, ..., As are Gell-Mann matrices. For SU(2}, the condition of unimodularity

reduces to the fact that the parameter 7, in (37) is equal to zero, therefore U/ e SU(2)

is parametrized by three real parameters which make up a vector in R?, 5 = (5, %2, m):

_1-ino

T1+ine

For SU(3), the condition of unimodularity leads to the nonlinear equation which

connects nine parameters in (38):

3n5—monimit+ i‘/.%hjklnj"?knf —1n0=0 (40)

where hy, are constants which are completely defined by the structure constants of the
group U(3) (see the formula (A.3) in the appendix).

(39)

4.2. The expressions of the Cartan forms for the groups U(2), SU(2), U(3), SU(3)

According to the method presented in section 2 and using the formula (36) one can
obtain the Cartan forms for the group U(2):
(dU) U-l = _2if;}(n03 N1, N2, 173) d‘nﬁ':
By + alin + afima
(1= ma+7°) +4n;

(41)

f;j("?o, M N2y ) =
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where @}, @3} are constant coefficients whose expressions are given by the formula

{A.4). For the group SU(2) one has:

(d U) U_l = —Zij;lb(nl > M2, 7?3) dnbo’a a, b = 13 2; 3 (42)

1
Jap(1, M5 13) = a1 +7 )2 53 [8ar — 285N+ (82000 + 8acbup — BapBac) MaMa ]
which can be derived directly from the parametrization formula (39) or obtained from
(41) by imposing n,=0.

By the same method we have for the expressions of the Cartan forms in the case
of group U(3) parametrized by (38):

@UYU™ = =2iF;(n0, 11, - .-, ms) Ay,
Rj("}'o, Tise-sNs) (43)

__S+B 27+ BEET T B M T+ B M1 o
(1 =390+ 1:m:)*+ (VOno— 03 +VEnon:m: —Fihpempm,m. )
where 8s are constant coefficients whose expressions are given by the formulae (A.8).

The Cartan forms for the group SU(3) are defined by the same equation (43), but one
must take into account the connection equation (40) as an additional equation.

4.3. The Lagrangians of the principal chiral fields (pcr) for the groups 1(2), SU(2),
U(3), SU(3)

The Lagrangians of the pcF are defined as the left- and right-invariant metrics in Lie
algebras [10, 19]:

& = —const Sp[(dUYU AL U]. (44)
The Lagrangian of pcr for the group U(2) has the form:
& = const[(1—n5(x) + 77°(x))*+475(x)I (8 + (@i + afik) mi(x)
+ (af}d fﬁlﬁa@,‘ﬁaf}?)m(x)m(x)
+(a PP+ aPa) m5) (X))
+ @0 (2} i (X) D (X) 7o (%) 0 (x) 18, 7;(x )0 1 x) (45)

where all the indices take the values 0, 1,2, 3. The Lagrangian of pcF for the group
SU(2) takes the very simple form:

(@n(x))*

¥= COnSt(—l:W. (46)
The Lagrangian of pcF for the group U(3) is
& = const Fy(n(x)) Fy(n(x))3,.n,(x)0*n;(x) (47)

where F;(%)= F;(%0, M1, ..., 115) are defined by (43). For the group SU(3) one must
add to (47) the equation (40) regarded as a connection equation.
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4.4. The Lagrangians of Goldstone fields (GF)

Let us now consider the chiral fields which take values in the coset space G/ H. It
is well known [7, 11] that in the case of system with spontanecus symmetry breaking,
if G is the symmetry group of the Lagrangian, H is the invariant subgroup of the
vacuum, then the parameters of the coset space G/H can be identified with GF. Let
us denote with V, the generators of the subgroup H, with A, the generators which
supplement H to the entire group G. The Cartan forms in this case can be written as

(dG( Q))G_I(Q) = iQ:’:(l]Xn = i(_Bc: Va + w:'Ar')- (48)

The differential forms 8,, w; depend, in general case, on v, do, g, da, where » and
a are, respectively, the parameters of A and G/ H. In a geometric interpretation 8,, w;
are analogous to the rotations and displacements of a co-frame in the Riemmanian
spaces [6, 7]. For setting up the Lagrangians of Gr one can consider only the space
of parameters a, of G/ H, assuming v, =0, and define the Lagrangian'as the square
interval of the geodesics between two points g; and a;+da; [6, 7] '

& = const '(4, 3,a)a’(a, 8*a)C5.CE . - (49)

For defining the covariant derivatives of the fields which interact with GF one uses
the forms 8, [6, 7).

For setting up the Lagrangian of GF Wh1ch correspond to the breaking of the chiral
symmetry U(2}x U(2). to the subgroup U(2) we proceed from the direct product of
two independent groups U(2) parametrized by the R*-vectors »; and x;,4,7=0,1,2,3
(see formula (37)):

L R )

G=Um@ULW  Ulm=yit Tive.

For small %, ¥ one has
G=1,—~4 |:"?f (%@) 12) +x; (12®%)il =1,—4i[nX +xX ] (51}

where
o, ;
X§‘=5®12 Xf=12®5’
obey the following commutation relations: ‘
(X7, XE1=1au X5 X7, X[I=iapXs  [XOX[1=0 (52)
ay. are the structure constants of the group U(2) whose values are given by (A.2).

From X ¥, X} we make the combinations V, =XZ+XZ, A;=Xf~X{ which obey
now the following commutation relations:

[Va! V.E] = iaaﬁyvy [Va’ AJ] = iaajkAk
[Ar: Aj]=ia{r'ava (l’js k=05 17 2’ 3)‘

V, generate the subgroup H, A; are related to the broken symmetries. From (51) one
can write for the expression for an infinitely small element G in V,, A;

G;-_-'I—Zi[UaV“'Fa,-A,] va=77a+Xa &= X (54)
where 1., a; are, respectively, the parameters of subgroup H and the coset space G/ H.

(53)
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The Cartan forms for the group G=T{(2) x U(2) can be written as:
(dG)G ™' = —4i(q! VX F+xI X D)
Uk = i;("?o, My N2s M) d”b Xi;( )=ﬁ<!(Xu= X1: X2, X3) dx: (59)
where f;(n) are given by the formuia (41). Transforming (55) to the form:
(dG)G ™ =-21[ 0,V + ;A]
8 =m0+ XV = foy dmy+Fu(x) dxa (56)
ap = Tii'm-X;m= .-j("?) dz; —fulx) dxi

and restricting it on the spaces of parameters a; (see formula (54)): v, =, +x. =0,
Xo =—Ta» &=1:;—X:=27;, one obtains for the expressions of 8, and w; in the
parameters a; of the coset space U(2) x U(2)}/U(2):

ea =[faj(a}—faj(_a)] daj W= [ﬁ}(a)-l-.ﬁ'j(_a)] daj' (57)

According to (49) the Lagrangian of Gr which correspond to the breaking of the
chiral symmetry U(2) xU(2) to the subgroup U(2) is given by

& = const w'(£ 8,£)0’ () CLCY (Like=0,1,2,3)  (58)
where C§. = a;,, are the structure constants of the group U(2) (see (A.1})
©'(& 8,£) = [l &)+ f{—8)0,.&- (59)

It is easy to show C%.C%, = 8,,, therefore one obtains
& = const w”(£(x), 3,£(x))o(&(x), 8"£(x))
= const[(1— £5(x) + £(x))* +4£5(x)1
X {BaBoyr+ (8t G+ SuBayi) G X)&(x)
+ @G a G & (X) 6(X) 6 ()£, (x)}0,8(x)37 £ (x)
ij,k=0,1,2,3 a=1,2,3. (60)

For the Lagrangian of GF which correspond to the breaking of SU(2) x SU(2) to
SU(2) one has

[(&(x))*+4{£(x)a(x))* ~2£%(x)(84(x))’ +§4Lx)(6§(x))”]

& = const T2 (61)
Note that by the change of field variable
£(x)
2=

w(x)= -y (62)

the Lagrangian (61) can be brought to the simple form:
(am(x))
= const ———5.
& =cons TR (63)

Furthermore, considering the components of the field 7 (x) as stereographic coordinates
of the sphere S° in the space R* and changing them to the coordinates ¢”(x) of the
space R*(v=1,2,3,4), the Lagrangian (64) takes the familiar form

L=30,p"(x)0"¢"(x) e”(x)e*(x)=1 (64)
which is the Lagrangian of the n-field.
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In the same way, but by more cumbersome calculations one has the Lagrangian
of the GF which which correspond to the breaking U(3) x U(3) to U(3):

& = const s (§(x){9,.£a(x)3" £, (x) + [ ¥F & (x)&(x)
+ ’Yl(';}czmu &(x)&(x) . (x) €, (x)
+ '}’E,l'ﬁ‘aclmnpqfk(x)fl(x)gm(x)é'n(x)gp(x)gq(x)
+ ¥ S ktmnpars G (V61 () £ () £2(x) £ (%) &4 (%) (x) £:(%)]
X 3,.8(x)a"&(x)} _ (65)
where
s(x) = (1-3£6(x) + £(x)£(x))* — (VB &o(x) =il (x)
+i\/€f<)(x)§f(x)§i(x) + hi,izfaff,(x)fiz(x)fig(x))z
&(x) = (&(x), £,(x)),a=1,2,...,8; the constant coefficients v are given by the for-

mula (A.9). The Lagrangian of the Gr which correspond to the breaking SU(3) x SU(3)
to SU(3) coasists of the Lagrangian {(65) and the connection equation (40).

5. Conclusion

The method developed in this work for calculating Cartan forms is applicable for any
case when one uses a natural (in the sense of the formula (1)) parametrization in which
a composition law of finite (but not only infinitesimal) group transformations is given.
By using this method and the linear and natural parametrizations of groups the gauge
theories of spacetime and inner symmetries can be formulated in a finite (but not only
infinitesimal) approach. The gauge field transformations under the finite local group
transformations may be useful, for example, in the problem of quantization of gauge
theories for eliminating non-physical variables (gauge degrees of freedom) before
quantization.

The method gives also a rather effective tool for setting uwp the Lagrangian of pcFs
and GFs. The obtained Lagrangians are distinguished from the previous known ones
by the new types of nonlinearity (ratios of polynomials). For the group SU(2), the
Lagrangians (see (46) and (62)) are equivalent to the Lagrangian of n-field on the
sphere S°, but may be more convenient due to the fact that all the informations about
interaction are contained in the Lagrangian without any additional connection equation.
For the groups U(3) and SU(3), the Lagrangians of pcF and GF have not been written
elsewhere.

Appendix
The commutators and anticommutators of the matrices o; =gy, o,), where a,=1,
7,23 are the Pauli matrices, have the form

{0’;, O:,]._ = 2]..a,'jk0'k {G',-, O}}.;_ = ZS,-J-kO'k i,j, k = 0, I, 2, 3 (AI)

where ag, Sy, respectively, are antisymmetric and symmetric in any pair of indices.
The non-zero components of @, sy, are

Qabe = Eabe So00= 1 S0ab = 6ab [as b, = 1: 2: 3) ' (Az)
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Denoting

h;‘jk= ik Sijke (ist k=0 1, 2 3) (A.S)

one has for the coefficients %}, %) in the formula (41)

o Sjlk) hjkl kk_"l

@l = 48yS0iBor + 28 s + i) 801 — Pugmfomss- (A4)
The commutators and anticommutators of the matrices
Ai=(Ao, 45)
{(Ag =~/§I, As (2=1,2,...,8) are the Gell-Mann matrices) are
LA, A 1o = 2iAA {hi Ak =280, (i, , k=0,1,...,8) (A.5)

where Ay, Sy, Tespectively, are antisymmetric and symmetric in any pair of indices.
The non-zero components of A, Sy are:

Aabc =j;bc SOGQ ='\/% S(Sub = \/'_%aab Snbc = Qape (A'6)
where fop., dae are defined by the following relations:
[Aa’ /\b] = ziﬁzbc)‘cs {’\a: ’\-b}-i- = 2dabc’\c (a, bs c= 1: 23 ] 8)' (A-7)

The values of fup., dope are given in any textbook on particle physics. The coefficients
B, BV, B2, 8%, BY in formula (643) have the form:

. hgk _.f:_;k"“idyk )Buk _,k. hkji ,
B ukz = 88uuBi + Pitembiomis — hkjmhml'! + Byttt
B = 3Ry — i} SoiBom + (gt =~ Bgge) Sy
+h/_ ( knhnh hkfn rui)sﬂm + (hkrn nip prm hkjnhnfphpmi)

B = 98,5BorBomBon — 68,BoiSrmn + 838 (a8
+31‘\/_( biki + hk}i)aﬂlsﬂmaﬂn h/_( ki + hk}'ﬁ')aoiamn
- 3(2hkjphpfi + hk!php_;t +h kphpk)aﬁma()n + ( ph + hkfphpji)amn
- 1"/—( 6(Auaphpigham + hiqphp!qhemf Y8on+ PraphpsaBmePirni-

The coefficients 7(2’, ¥4 4 4® in formula (65) have the form:
Ejzk).l = E zampajk.r
Tyki’mn Z (pmklpa_;mn +26aﬂa}kimn)
{A.9)

(6)
Yljki’mnpq E 2Pmkiﬂa)mnpq

8
'}’Ekai'mnpqrs Z q«ﬂ:lmnqa;pqrs

where

Dt = 2885 + Bghg =+ hyechoy; — by by

Giietmn = 98500x8010mn — 688 0rB018mn + 801 Cmn
+ 658 Py + By} BorBomBon — 2V By + B ) Bo1B
= 3(Byphi + Buehe — 2Pi5ehsi ) SomBon + (Ruhiys + e Pt ) Smn
= VO (PP oms + PrgePossPomi ) Bom + PP
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