
A new method for calculating the Cartan forms and applications to the gauge and chiral field

theories

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 631

(http://iopscience.iop.org/0305-4470/26/3/022)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 20:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 26 (1993) 631-645. Printed~in the UK 
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applications to the gauge and chiral field theories 
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Institute of Physics, Academy of Sciences of Belarus, 70 Skarina Avenue, Minsk 220602, 
Belarus 

Received 6 May 1992 

Abstract. We develop a method for calculating the Cartan forms in the parametrization 
of group transformations which has a simple composition law and satisEes the condition 
called the naturalness. The method is applied to gauge theories for finding the explicit 
transformation laws of gauge fields under finite local transformations of groups, and to 
chiral field theories for setting up chiral field Lagrangians. The explicit forms of finite 
transformations of gauge fields and their nonlinear realizations for gravity and supergrarity 
are found. The expressions of the Cartan forms, the Lagrangians of the principal chiral 
fields and the Goldstone fields for the unitary groups U@), SU(2), U(3), SU(3) and the 
eoset spaces associated with these smups axe derived. The Lagrangians obtained are 
distinguished from the previous known ones by new types of nonlinearity. 

1. Introduction 

It is well known that the effectivity of the group-theoretical methods essentially depends 
on the choice of parametrization. The vector parametrization, proposed at first for the 
rotation group O(3) and the Lorentz group [l,  21, and generalized afterwards for some 
other groups 13-53, has been convenient and effective in the investigation of many 
problems of these groups. The important features of this parametrization which are 
not present in many other parametrizations are the following: (i) The composition law 
of parameters which correspond to group multiplication has a simple form; (ii) The 
parametrization satisfies the condition, called naturalness; that is if G( Q) is a group 
element, Q is the set of parameters, regarded as a vector in some space, then 

G(Q = 0) =I  G(-Q) = G-'(Q) (1) 

(I is the unit element of the group); (iii) The parametrization has also linearity; that 
is an inner automorphism corresponds to a linear transformation of parameters: 

G(Q)G(Q')G-'(Q) = G[MQ)Q'l (2) 
(A is a matrix). Because of these properties many results can be obtained directly by 
using only operations on parameters and without addressing matrix forms of transfor- 
mations of groups or their representations. 

In the following we develop a method for calculating the Cartan forms in the vector 
parametrization of groups (section 2). It turns out that the calculation can be based 
only on the composition law of parameters and the naturalness of the parametrization, 
unlike in the usual approach based on solving the Cartan-Mauer's equations [6,7]. 
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The method is applicable to many different groups and has many interesting applica- 
tions. The applications are discussed in two directions: (i) finding the explicit transfor- 
mation laws of gauge fields for gravity and supergravity under the finite focal group 
transformations, the explicit form of the nonlinear realization of gauge fields (section 
3); (U) setting up the principal chiral and Goldstone field Lagrangians related to the 
unitary groups U(2), SU(2), U(3), SU(3) and the coset spaces associated with these 
groups (section 4). In the conclusion~(section 5) we discuss the results obtained. 
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2. Method for calculating the Cartau forms 

Let the Lie group G be parametrized by the set of parameters Q=Q.. Suppose that 
(a) A composition law of.parameters Q"=(Q, Q') which is defined by the group 
multiplication G ( Q )  = G(Q)G(Q') is given, and Q continuously depends on Q, Q'; 
(b) the parametrization satisfies the naturalness (in the sense of formula (1)). From 
the viewpoint of geometry of group space of parameters an infinitely small vector dQ 
which has origin at the point Q corresponds to the group element C( Q'): G( Q') G( Q) = 
G(Q+dQ),or G(Q')=G(Q+dQ)G-'(Q). DecomposingG(Q+dQ) toseriesindQ: 

= G(Q)+dG(Q)+O(dQ2) 

we obtain 

G( Q') = G( Q+dQ)G-'( Q) = 1 + (dG( Q))G-'( Q) +O(dQ2). (3) 

G(Q')= G(Q+dQ)G-'(Q)=G(Q+dQ)G(-Q) (4) 

Q'=(Q+dQ, -Q). (5) 

In the other side, from the naturalness (1) we can represent G(Q)  in the form 

and therefore 

In equation (5 )  Q'continuously depends on dQ (by the preposition (a)) and when 
dQ=O we have Q'=(Q, - Q y = O  (by the naturalness, preposition (b)), therefore the 
parameters QL are infinitely small and can be represented in the form 

(6) 

where the coefficients an,( Q) aepend on the concrete form of the composition formula, 
Q;"= a.,(@ dQm is the first order (in dQ) terms in the expression of Q'. (6). 

Remember that the tangent space to the Lie group G in the unit element of the 
group is identified with the Lie algebra of this group, G(Q') have the form 

Qb =(Q+dQ, -QL = unm(Q) dQm +O(dQ2) = Q?)+O(dQz) 

G(Q')=I+iQ;(')X,+O(dQ') (7) 

(dG(Q))G-*(Q)=iQ~.''X,., (8 )  

where X, are the generators of the group G. Comparing (3) and (7) we obtain 

From (8) it is clear that the Cartan forms in this approach is just the first-order (in 
dQ) terms (QL?) in the expression of the composition (Q+dQ, -Q). 
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3. The finite transformation laws of gauge fields and their nonlinear realizations for 
gravity and supergravity 

The explicit transformation laws of gauge fields under the local group transformations 
are written usually in infinitesimal form. It is not always easy to find explicit finite 
forms of these transformation laws. In [ 3 , 8 ]  such transformations have been found 
for the gauge.group SU(2) and the Lorentz group. In these works the calculations 
were based on the matrix expression of group elements or representations. However, 
for the more complicated cases such as PoincarC groups and supergroups, it is practically 
not possible to go on this way. The method developed in section 2 helps us resolve 
the problem. In the following we show that by this method it is possible to obtain not 
only the explicit finite transformation laws of gauge fields for the Poincar6 group and 
supergroup, but the explicit form of their nonlinear realizations as well. 

3.1. Thefinite transformation laws of gaugefields of the Poincare' group 

Let us consider the gauge theory of gravity in which the gauge group is the Poincar6 
group 191. It is known that in terms of the geometry of a principal fibre bundle the 
gauge fields are connection coefficients on a cross-section of a bundle with spacetime 
as its base and the symmetry group as its fibre. A finite local transformation S of the 
gauge group (that is a finite group transformation whose parameters depend on the 
points of base spacetime) are described as a change of section. Under this transforma- 
tion the connection Cl (the Lie-algebra valued one-form on spacetime) is transformed 
as the following [ lo ] :  

Cl' = SClS-' t S dS-'. (9) 
In the following we show that it is possible to find the explicit form oftransformation 

laws of the coefficients Cl: of connection one-form Cl (Cl = ClCIA dxw, la ( A  = 1,  . . . , l o )  
are generators of the Poincar6 group, xP are coordinates of base spacetime) under the 
gauge transformation (9). We use the parametrization proposed in [ 4 ] .  According to 
[ 4 ]  the transformations of the Poincari group can be represented the 5 x 5-matrix 
form: 

where p = { p a ,  p:}  ( a  = 1 ,2 ,3 )  is a complex three-dimensional vector parameter; b = 
{bm}  ( m  = 1 , 2 , 3 , 4 )  is a real four-dimensional vector parameter, L( p )  is the 4 x 4 matrix 
of an arbitrary Lorentz transformation [ 2 ] :  

p x  is the antisymmetrical 3 x3 matrix, dual with the vector p ,  ( P ~ ) , , ~  = ~ . ~ ~ p ~ .  The 
composition law of parameters has the following form: 
Q = ( Q ,  Q)  Q = { P . P * .  b )  Q = IP'. P'*. b') Q = {p", p"", W }  

11 +pf21L( -p")L( p )  b + 11 +p21L( p")L( -p') b' 
11 +p2p'2-2pp'l 
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It is easy to show that the parametrization (10) is natural and linear in the sense of 
the formulae (1) and (2). It should be noticed that the usual parametrizations of the 
Poincari group do not have these properties. The matrix A(Q) in the formula (2) is 
the following 

V I  Kuvshinov and Nguyen Vien Tho 

: . )  (13) 
0 7 P )  0 

O'(P*) 
( O  a+(P,P*,  b )  a-(P,P*,b) L2(P) 

A(Q) = 

where O ( p )  is the complex 3 x 3 matrix which acts in the space of complex parameters 
p and takes the form 

a,( p,  p* ,  b) are the rectangular 4 x 3 matrices whose elements are 

(136) 
L 

[ d P , P * ,  blm, =-- [L~(P)~?)L(-P)~I ,  
I1+PZI 

I?) are the 4 x 4  matrices of generators of Lorentz group whose elements are 

[ I b " ] m n  =$[*(&nmo84n - 8 a n a m d )  -$&ebc(80, -8bn8mc)l  
(14) 

(a ,b , c= l ,2 ,3 ;  m, n = 1,2,3,4). 

In the five-dimensional representation (10) of the elements of the Poincari group, ten 
group generators la = {J?), T, , }  are the following 5 x 5 matrices: 

(15) 
21b=' 0 

I ; = (  o) ( ~ ) M N = u m d N s  (M, N =  1,2, .  . . , 5 ) .  

The connection one-form fl can be written as 

C2=ClAIa =nJA dx'= (oJ,.J:+w*,J~-'+ O,"T,) dx' (16) 

and under the transformation (9)  Cl, transform as 

0!4ra =n~s(Q)l~s(-C?) + s(Q) dS-'(Q). (17) 

Based on the linearity (2) it is easy to find that 

S ( Q ) W ( - Q )  = AAB(Q)IA 
which defines the first term of (17) (A(Q) is the matrix (13)). The second term is the 
Cartan forms which can be calculated from the composition law (12) by the method 
presented in section 2. After some manipulations we obtain for the transformations of 
the connection coefficients (gauge fields) under the group transformations with arbitrary 
finite local parameters Q(x) = { p ( x ) , p * ( x ) ,  b(x)}: 

=[02(p)1 .6Wpb+F.b(P)a ,Pb 

- - [ o ' ( P * ) l . b W : b + F ~ b ( P ) J , p ~  

(18) 0:- = [ ~ + ( P , P * ,  b)lZo,,+[a-(p, P*. b)lZo:.+[L2(~)1""~~ 
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where the matrices O(p) , ru , (p ,p* ,  b )  are given by (13a), (13b) 

The matrix p,(p, p*, b )  are the rectangular 4 x 3 matrices whose elements are 

From the transformation formulae (18) it is difficult to determine the tensor nature 
(with respect to the local frame) of the gauge field components. However, these field 
components can be replaced by their appropriate functionals which have clear tensor 
nature and are considered as independent field variables. Usually this is implemented 
by considering nonlinear realizations and introducing nonlinear gauge fields [9,11,12]. 

3.2. The nonlinear realization for the Poineare‘ group 

Let us consider in the parametrization nonlinear realization for the Poincare group 
which is linear in the Lorentz group. One can represent the transformations of the 
Poincar6 group (10) in the form: 

where we denote with L the Lorentz subgroup and with F the coset space P/L. Then 
one can introduce the field @(x) which takes values in the coset space at a fixed 
point x: 

and define the nonlinear gauge field h: 
h = @-‘a@ + @ - I  d@. 

Taking into account the explicit form (15) of generators of the Poincare group, for 
the 5 x 5 matrices CL, h can write 

where w, 6 are one-forms which take the values in the Lie algebra, of the Lorentz 
subgroup: o =(opOIL+’+u$I:] dx”, 6 =(6JL+)+6EaIL-)) dx”; 0,0  are R’.3-valued 
one-foTy 0 = O,”Im dx”, 0 = O,”Im dx”. The formulae (20) and (21) allow us to 
define 0,B from w,  0 (by using the naturalness, linearity and the method proposed in 
section 2) 

A 

o=o e^= 0 + D (-) D = d + o. (23) 



636 V I  Kuvshinov and Nguyen Vien Tho 

Under the change of the cross-section 6 is transformed as the linear gauge field 
of the Lorentz group: 

6'= L2(p)o(L2(p)-' + L'( p )  d(Lz(p))-' (24) 

and e  ̂ as a Lorentz tensor: $= L2(p)$. Therefore 6 and ê  ca," be interpreted, respec- 
tively, as the local Lorentz connection and tetrads (e: = k,&', [k,] = cm). From the 
nonlinear gauge field 6 the culvature 2-form, the action and equations of motion of 
gravity may be constructed by the known procedures [9,12]. 

3.3. The $finite transformation laws of gauge fields of the Poincare' supergroup 

Now let us go over to the case of supergravity formulated as a gauge theory of the 
Poincar6 supergroup 112-141. The natural and linear parametrization of the Poincar6 
supergroup has been proposed in [SI. In [SI the elements of supergroup S ( Q )  are 
parametrized by the set Q of parameters: Q = (p, p*,  B, A, A*), where p is a complex 
three-dimensional vector parameter, B is a Hermitic2 x Z~matrix, A is a two-dimensional 
complex vector with anticommuting components. The compositional law of parameters 
is the following: 

Q = ( Q ,  43 
(1 -p'Z)p+(l -P2)P'+2[PP'I ' 

p*n= (p")* 
P"=(B,P')= 1 +p2p'2-2pp' 

where 

ua are Pauli matrices 

The linear transfonnation which corresponds to the inner automorphism S(Q) = 
S(Q)S(Q')S-'(Q) is 

(P").S = E&P< 06= I PX+(PX)2 
1 +p= p'= OZ(p)p' O(p)=1+2 
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The connection one-fonn which takes values in the superalgebra has the following 
decomposition: 

fl=wJ:+oZJ,+ emTm+YaQ&i -YZQZ" 
='(wsaJ: + ozvo J,+ eP,Tm +Y,,Q; -Y&QE)O dx" 

Q2 = cagQp. (27) 
Using the composition law (25), the linear transformation (26) and using 

similar methods as for the Poincar6 group, we obtain for the transformations of 
the gauge fields under the supergroup transformations with arbitrary finite local 
parameters Q ( x )  ={p(x),p*(x), B(x), A(x), A*(x)}: 

e; = 1'0,l"- 11 +pZI-1[2Z2&Pl-1(B+ iA. A)l+ +2l(B -iA.A)Z-"&~ZC2] 
@;*= O:b(P)Ulrb+F.b(P)JpPb 0% = (&)* 

-2i(l +p)-'/zlA~~.,lc2-2i(l +p2)-1'212Y P .AI' 
+ 11 +p21( 1 +p')-'[( a= +p.)Z(B +iA.A)l+a,p. 
+ r(B - i ~ .  A)l+(a:+p:)appi$ 
+ la,Bl++ilA. (J&-' -iZ(J"A). AI'] 

(28) 

9; = 12YP - (1 +p2)-1/2[212&,l-'A - ( +/3.)Ad,p. + h,A] YZ'=(YL)* 
where 

wP=-iwZaua A+ e, = e,,,VT- e:= e;,um 6, = iw,,ua 

aa=(1+pz)-'pa-iua p. =(l+pz)-1p,-2iFboub 
Fob(P) = -(l +P2)-2[(1 +P2)sob +2pnpb+(Px)czb1 

3.4. The nonlinear realization for the Poincare' supergroup 

The nonlinear realization for the Poincarb supergroup which is linear on the Lorentz 
group is performed by the same scheme as for the Poincar6 group. 

A supergroup transformation can be represented in the form 

S(P, P*. B, A, A*) 

= S,SL (29) 
where SL is an element of the Lorentz subgroup, SF is an element of the coset space 
GIL Iwe denote with L the Lorentz subgroup). One can define the nonlinear gauge 
field 0 

(30) 
where the field @(x) takes the values in the coset space in a fixed point x and has the 
form: 

h = @-'a@ + W' d@ 
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q, (x ) ,  q 2 ( x )  are anticommuting components. From (30), (31) and the properties of 
the parametrization one can obtain for the explicit form of the nonlinear gauge fields: 

up0 = up. 

V I  Kuushinou and Nguyen vien Tho 

1 qa = W f  

where 

a,=a,+&;+&;+ 
A; =a;+26; A;+ = a;+24++ 

a . .  *+ . 6, = iioFua OIL= - l W $ u a  e, = e,,um e, = e,,u-. 
Under the change of section the connection one-form h is transformed as 

Thecomponents &,,,$,e ofthenonlineargaugefieldhwiththetransfor- 
mation law (33) are interpreted as, respectively, local Lorentz connection, tetrads and 
Rarita-Schwinger field. In terms of these fields one can construct the culvatures, the 
action and the equations of motion of supergravity [12-141. 

4. Lagrangians of the principal chiral and Goldstone fields associated with the 
unitary groups 

Nonlinear c h i d  field models have been the subject of intense study in theoretical 
physics [lo, 15,161. In these models the interaction is defined not by adding an 
interaction term to the free field Lagrangian, but by the geometrical structure of the 
nonlinear manifold in which the field takes values. For such chiral fields as the principal 
chiral fields, the n-fields, the Goldstone fields, the Skyrme fields, etc., the manifold M 
of field values is either a Lie group G or a coset space G / H  ( H  is the subgroup of 
G). It is possible to set up the Lagrangians of the nonlinear chiral fields by considering 
the geometty of the group space which is analogous to the geometry of the Riemannian 
spaces and the spaces of &ne connections. The fields are identified with the local 
parameters of group spaces or coset spaces, the Lagrangians are expressed through 
the Cartan forms for the corresponding Lie group space [6,7]. 
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4.1. The vector parametrization of the unitary groups U(2), SU(2), U(3), SU(3) 

For deriving the Cartan forms associated with unitary groups by the method presented 
in section 2, one cannot use the exponential parametrization U = exp(i&Xk) (Xk are 
generators), because the composition law of arbitrary finite parameters has not the 
simple form. An adequate one is the parametrization by the Cdey form [17,18J 

l + N  
I - N  U=U(N)=- . U E  U ( n )  (34) 

where N is a antihermitic n x n-matrix N+= -N. The composition law of parameter 
matrices N is: 

U(L) = U ( M )  U ( N ) ,  L = (M,  N )  
= 1 -(I - N)(I+MN)-Y~ - M ) .  (35) 

( M +  SN, M) (1 - M)-'SN(l+ M)-' (36) 
where SN is a small addition to the matrix M. It is easy to verify that the parametrization 
has naturalness (1) and linearity (2). 

Let us consider the unitary groups U(2) and U(3). Then instead of the matrix N 
one can choose as parameters of these groups the components of matrices M in u-basis 
(for U(2)) or A-basis (for U(3)), that is for U(2): 

In  particular, one has [lQ 

1 -iT,o, 
l+iqiui 

U =  U ( 7 ) = -  (37) 

where vi = (qo, q )  are four real parameters which make up a vector in R4; uo = I, CT,,~,~ 

are Pauli matrices, and for U(3): 
l - i q d j  
l+qjA; 

U=U(T) )=-  

where vi = ( qo, q, , . . . , qs) are nine parameters which make up a vector in R9; A. = 
GI, A,, . . . , A8 are Gell-Mann matrices. For SU(2), the condition of unimodularity 
reduces to the fact that the parameter qo in (37) is equal to zero, therefore U E SU(2) 
is parametrized by three real parameters which make up a vector in R3, 7 = ( ql , v2, ?13): 

For SU(3), the condition of unimodularity leads to the nonlinear equation which 
connects nine parameters in (38): 

where hjM are constants which are completely defined by the structure constants of the 
group U(3) (see the formula (A.3) in the appendix). 

4.2. The expressions of the Cartan forms for the groups U(2), SU(2), U(3), SU(3) 

According to the method presented in section 2 and using the formula (36) one can 
obtain the Cartan forms for the group U(2): 

3 d -  ?lo?liVi +i&jkOlj?lk?l)7r - 70 = 0 (40) 

(41) 
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where a&, agf  are constant coefficients whose expressions are given by the formula 
(A.4). For the group SU(2) one has: 

(dWU-'=-2ifob(Ti, V 2 , 7 3 )  dVboh 

V I  Kuvshinov and Nguyen Vien Tho 

a, b = 1,2,3 
(42) 

1 
l8.b -2E&Vc + (sad8& + 8ac8db - 8ab8dc)qcl?dl 

(1 + V 2 ) 2  
LdVI, V 2 , 7 l 3 )  = 

which can be derived directly from the parametrization formula (39) or obtained from 
(41) by imposing qo = 0. 

By the same method we have for the expressions of the Cartan forms in the case 
of group U(3) parametrized by (38): 

(dU)U-'=-2i~~(Vo.V,, . . . ,  vS) dVj& 

Ej ( l lO ,Vl , .  . . , 7 s )  (43) 

- - 8, +a"*' IIk -E P %7m + Vkl l f l lm  + P%" mqlqmq. 
(1 - 3 d + v r d 2  + (AVO - +  mas - $ihpqrqpvqd2 

where ps are constant coefficients whose expressions are given by the formulae (A.8). 
The Cartan forms for the group SU(3) are defined by the same equation (43), but one 
must take into account the connection equation (40) as an additional equation. 

4.3. The Lagrangians of the principal chiral fields (PCF) for the groups U@), SU(2), 
U(3), SU(3) 

The Lagrangians of the PCF are defined as the left- and right-invariant metria in Lie 
algebras [lo, 191: 

2= -const Sp[(dU)U-'(dU)U-']. (44) 

The Lagrangian of PCF for the group U(2) has the form: 

2 = const[(l- q?j(x) + 1 1 * ( ~ ) ) ~ + 4 q ~ ( x ) ] - ~ [ 8 ~ , + ( a ~ L +  a$L)qk(x) 

+ ( a$Lf + aj?L, + a;2a$??)Vk( x ) q ( x )  

+(a&!a$)", + a ~ L a ~ ~ ) q k ( x ) V , ( x ) ~ m ( x )  

+ a ~ ~ a ( 2 ) 9 . , . ~ * ( X ) ? l r ( X ) q m ( X ) l ) n ( X ) l a ~ ? l j ( x ) J ~ ~ ~ ( X )  (45) 

where all the indices take the values 0, 1,2,3. The Lagrangian of PCF for the group 
SU(2) takes the very simple form: 

The Lagrangian of PCF for the group U(3) is 

2= COnSt Fi i (n(x) )F i j . (17(x) )J~V, (x)Jpl l~ (x)  (47) 

where E,(q) = Ej(qo, qlr.. . , q8) are defined by (43). For the group SU(3) one must 
add to (47) the equation (40) regarded as a connection equation. 
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4.4. The Lagrangians of Goldstone$elds (GF) 

Let us now consider the chiral fields which take values in the coset space GIH. It 
is well known [7,11] that in the case of system with spontaneous symmetry breaking, 
if C is the symmetq group of the Lagrangian, H is the invariant subgroup of the 
vacuum, then the parameters of the coset space G/H can be identified with OF. Let 
us denote with V, the generators of the subgroup H, with Ai the generators which 
supplement H to the entire group G. The Cartan forms in this case can be written as 

(48) 

The differential forms e,, mi depend, in general case, on v, dv, a, da, where U and 
a are, respectively, the parameters of H and G/ H. In a geometric interpretation e., mi 
are analogous to the rotations and ‘displacements of a co-frame in the Riemmanian 
spaces [6,7]. For setting up the Lagrangians of GF one can consider only the space 
of parameters a, of G / H ,  assuming v, = 0, and define the Lagrangian’as the square 
interval of the geodesics between two points ai and ai+dai [6,7] 

(dG( Q))G-’( Q) =iQ;(”X. =i(  O,V, + wiAi). 

s = c o n s t  “ (a ,  J,a)&(a, a”a)CzCkJ. (49) 
For defining the covariant derivatives of the fields which interact with GF one uses 

For setting up the Lagrangian of GF which correspond to the breaking of the chiral 
symmetry U(2) x U(2)~ to the subgroup U@) we proceed from the direct product of 
two independent groups U(2) parametrized by the R’-vectors vi and xi, i, j = O ,  1,2,3 
(see formula (37)): 

the forms 8, [6,7]. 

For small 7, x one has 

G=14-4i vi ‘01, +xj 1,01 =l4-4i[viXf+x,X:] (51) [ (F ) ( 31 
where 

obey the following commutation relations: 

[Xf, ~,“]=iu,x,” [x:, x:] = iaukX: [XL, Xfl= 0 (52) 

silk are the structure constants of the group U(2) whose values are given by (A.2). 
From XF,Xf we make the combinations V,=Xf+XL, Ai=X;-Xf which obey 
now the following commutation relations: 

V, generate the subgroup H, Ai are related to the broken symmetries. From (51) one 
can write for the expression for an infinitely small element G in V,, Ai 

G=l-2i[u,V,+aiA,] v,=va+xn ai = vi -xi (54) 

where U,, a; are, respectively, the parameters of subgroup H and the coset space G/H. 
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The Cartan forms for the group G = U(2) x U(2) can be written as: 

(dG) G-’ = -4i(q;(’)XF +x$”X:) 

q ~ ( ’ ) = . f j ( ~ ~ >  V I > V Z >  73) dqj 
(55) xP’=fk i (~~~ X I , X ~ , X ~ )  dXi 

whereJ?(q) are given by the formula (41). Transforming (55) to the form: 

(dG)G-’=-2i[0,V,+ojAj] 

and restricting it on the spaces of parameters ai (see formula (54)): U, = qm +& =0, 
xm = -qm. ai = 7; -xi = 2 q j ,  one obtains for the expressions of 0, and 0; in the 
parameters ai of the coset space U(2) xU(2)/U(Z): 

e, =[fej(a)-fmj(-a)l dorj oj=[ .L,(4+.f j ( -a) l  day (57) 

According to (49) the Lagrangian of OF which correspond to the breaking of the 
chiral symmetry U(2) xU(2) to the subgroup U(2) is given by 

3= const ~ ‘ ( 5 ,  a , f ) d ( f ,  a*)cp,ctj GJ, k e =O, 1,2,3) (58) 
where Cz = ai@ are the structure constants of the group U(2) (see (A.l)) 

Note that by the change of field variable 

the Lagrangian (61) can be brought to the simple form: 

Furthermore, considering the components of the field w ( x )  as stereographic coordinates 
of the sphere 5’’ in the space R4 and changing them to the coordinates p’(x) of the 
space R4(v= 1,2,3,4), the Lagrangian (64) takes the familiar form 

~ = + J ~ ~ ’ ( x ) J * ~ ” ( x )  ~”(X)(P”(X)  = 1 (64) 
which is the Lagrangian of the n-field. 
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5. Conclusion 

The method developed in this work for~calculating Cartan forms is applicable for any 
case when one uses a natural (in the sense of the formula (1)) parametrization in which 
a composition law of finite (but not only inlinitesimal) group transformations is given. 
By using this method and the linear and natural parametrizations of groups the gauge 
theories of spacetime and inner symmetries can be formulated in a finite (but not only 
infinitesimal) approach. The gauge field transformations under the finite local group 
transformations may be useful, for example, in the problem of quantization of gauge 
theories for eliminating non-physical variables (gauge degrees of freedom) before 
quantization. 

The method gives also a rather effective tool for setting up the Lagrangian of PCFS 

and CFS. The obtained Lagrangians are distinguished from the previous known ones 
by the new types of nonlinearity (ratios of polynomials). For the group SU(2), the 
Lagrangians (see (46) and (62)) are equivalent to the Lagrangian of n-field on the 
sphere S', but may be more convenient due to the fact that all the informations about 
interaction are contained in the Lagrangian without any additional connection equation. 
For the groups U(3) and SU(3), the Lagrangians of PcF and CF have not been written 
elsewhere. 

, ' 

i 

Appendix 

The commutators and anticommutators of the matrices U; = (ao, U=), where uo= I, 
u15,3 are the Pauli matrices, have the form 

[U;, qJ-=2iaVkuk {ut> qf+ =2sVkak i, j ,  k=O, 1,2,3 (A.l) 

where agk, silk, respectively, are antisymmetric and symmetric in any pair of indices. 
The non-zero components of auk, sUk are 

&be = Eabe sQQO= 1 SOab = sob (U, b,~=I ,2 ,3) .  ~ (A.2) 
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